幂的乘方教学设计(第二课时)

2019-10-10 05:50:33 | 14人点❤ | 1Y币
温馨提示:以下是纯文字版预览,格式可能会显示错乱或异常,文件下载后无此问题,请放心下载。

幂的乘方

教学目标:经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力;了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题.

教学重点与难点:会进行幂的乘方的运算,幂的乘方法则的总结及运用.

教学过程:

一、回顾同底数幂的乘法

同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;即

am·an = am+n(m、n都是正整数)

二、自主探索,感知新知

64表示_________个___________相乘

(4个6相乘)

(62)4表示_________个___________相乘 (4个62相乘)

a3表示_________个___________相乘 (3个a相乘)

(a2)3表示_________个___________相乘 (3个a2相乘)

推广形式,得到结论

1.(am)n表示_______个________相乘 (n个am相乘)

=________×________×…×_______×_______ (=)

=__________ (= amn)

即(am)n = ______________(其中m、n都是正整数)

2.通过上面的探索活动,发现了什么?

幂的乘方,底数不变,指数相乘.

三、例:判断题,错误的予以改正

(1)a5+a5= 2a10 (

×

)a5+a5 = 2a5

(2)(x3)3 = x6 (

×

)(x3)3 = x9

(3)(-3)2·(-3)4 = (-3)6 = -36 (

×

)(-3)2·(-3)4 = (-3)6 = 36

(4)x3+y3= (x+y)3 (

×

x3与y3无法合并同类项

(5)[(m-n)3]4-[(m-n)2]6=0 (

√ )

四、小结:

幂的乘方运算法则:幂的乘方,底数不变,指数相乘.

点击下载
登录 后发表评论
最新评论